Glossary of mathematical terms for $5^{\text {th }} / 6^{\text {th }}$ class in primary and Junior Cycle

Bridging Materials for Mathematics

The following is a glossary of mathematical terms. The glossary is designed to inform students/parents/teachers of the vocabulary and meaning of terms in mathematics that students may have encountered in primary school and will encounter when they transfer to post-primary education. Many of these terms are used throughout the strands in junior cycle, but it is not a comprehensive list for Junior Cert. The definitions and examples here are specifically chosen for use in $5^{\text {th }}$ and $6^{\text {th }}$ classes in primary and junior cycle mathematics in post-primary schools in Ireland.

	Term	Diagram, Definition, explanation and example
A	abacus	Aelps to perform calculations by sliding beads along rods. acute

		1 2 3 4 5 2 4 6 8 10 3 6 9 12 15
	associativity	This is a property of number operations. The order in which we do operations is important. Multiplication is associative: $(12 \times 3) \times 6=12 \times(3 \times 6)$ Division is not associative $(12 \div 3) \div 6 \neq 12 \div(3 \div 6)$.
	axial symmetry	This is reflection of a plane figure in a line to form an image in a different place.
	axis of symmetry	This is a line drawn through a plane figure, so that one half of the shape can be folded over along the line to fit exactly onto the other. A shape can have more than one axis of symmetry.
B	bar chart	A diagram used to display data in rectangular bars. It is used to summarise and display information in a diagram.

bar-line graph	A way to show and compare data by using horizontal or vertical lines. The bars in a bar chart are simply replaced by straight lines.
base ten materials	Used for teaching place value and volume. There are ten small cubes in one long, ten longs in one flat, and ten flats in one block.
bisector	A line that divides an angle or line into two equal parts.

	36 has factors 1,2,3,4,6,9,12, 18,36 1,2 and 4 are the common factors and 4 is the highest common factor.
complementing	As with subtraction. Example: There are 10 stickers in a set. I have 4. How many more do I need to make a full set?
complement of a set	Elements not in a set. Example: The set $P=[1,2,3]$ the complement $P^{\prime}=[4,5]$
components of number	The number 4 can be made up of $1+1+1+1,2+2,3+1,1+3$ etc.
composite number	A number with more than two factors. Example: 6,12, 51, 65
congruent	2D shapes that have identical properties and are exactly the same size, shape and measure of angle.
conjecture	An unproven statement which appears correct and has not been proven to be true or false. Example: There is no biggest prime number.
conservation of number	Numbers can be counted in any order. The set does not need to exhibit uniformity.
co-ordinates	These are the numbered pairs used to locate points on the plane. The plane is a flat

		surface, often referred to as the Cartesian plane. There are some points shown in the four quadrants of the Cartesian plane.
	cylinder	A three-dimensional shape consisting of two identical circular ends joined by one continuous curved surface.
D	data	There are different types of data. (Categorical, numerical, ordinal, discrete and continuous). Discrete Continuous
	deducting	As with subtraction. Example: I had 10 sweets, I ate 3. How many have I left?
	denominator	Number below the line in a fraction.

diameter	A chord through the centre of a circle. It is twice the radius in length.
difference	Means subtraction. Example: The difference between two numbers such as 22 and 17 is $22-17=5$. 5 is the difference.
digit	The individual symbols used to build up numerals in a numeration system. $0,1,2,3,4,5,6,7,8$, and 9 .
direct proportion	When two sets are connected by a constant multiplier. $A=\{12,24,36\} \quad B=\{3,6,9)$. Set A is in direct proportion to set B and the constant multiplier is 4.
discount	A reduction (usually a percentage). This is associated with money. 20% OFF
distributive	This is a property of number operations. It describes how two operators can be used together when linked in a certain way. It does not always work. $5(4+3)=5(7)=35$ and this equals $5(4)+5(3)=20+15=35$, i.e. multiplication is distributive over addition. $5(20 \div 5)=5(4)=20 \neq 5(20) \div 5(5)=100 \div 25=4$, so multiplication is not

		distributive over division.
	dividend	A number or quantity to be divided by another number or quantity. Example: $24 \div 6=4,24$ is the dividend.
	divisor	Is the number that does the dividing. $36 \div 9=4$, the number 9 is the divisor.
E	edge	The intersection of two surfaces; in particular, the straight line where two faces of a polyhedron meet.
	element	An element is a member of a set. Example: $\mathrm{A}=\{$ dog, fridge, 17, Liverpool\}. There are four elements in the set A ; dog is one of the elements.
	empty number line	A number line without a scale, used to support mental and informal additions and subtraction.
	equation	A maths statement in symbols that includes an equals sign (equality). Example: $2 \mathrm{~b}+4 \mathrm{c}=34$
	equivalent	Has the same value as. Example: $1 / 2,0.5$, and 50% are equivalent.
	estimate	An approximation to an answer.
	expanded form	When the value of each digit in a numeral is written in its entirety. Example: $246=2$ hundreds +4 tens +6 units or $200+40+6$
	experiment	This is an activity which allows information/data to be collected and recorded (often called the results of the experiment). Example: rolling a pair of dice and recording the total.

	exponential	This is an expression in which a number is raised to some power. The power is the exponent. (see power) $6^{2}, 8^{3}, 12^{9}$
F	face	One of the plane surfaces of a polyhedron. A cube has six faces.
	factor	A whole number or expression that divides evenly into another number. Example: 24 has eight factors including itself and one;1,2,3,4,6,8,12,24 Prime numbers such as 7,11 , and 23 have exactly two factors.
	foreign exchange rate	Is the value one currency has in relation to another. Example: Foreign exchange rate. $€ 1.00=\$ 1.39$ thus $€ 100=\$ 139$. $\$ 2085=2085 \div 1.39=€ 1500$
	formula	Is an easy way of expressing information using symbols. Example: Area of a triangle ($1 / 2 \mathrm{x}$ base x height) $=1 / 2 \mathrm{bh}$
	frequency	Is the number of times an event occurs in an experiment. Frequencies are often summarised in a table or a histogram. Example: in nine soccer matches played on a school pitch during a tournament the number of goals scored was recorded as $0,1,1,0,2,2,0,2,0$. This information could be summarised in a frequency table:
	friendly numbers	Two numbers that are related to each other in a way that makes a calculation particularly easy. Example:457-257
	front-end strategy	Estimation that has its strongest application in addition. The left-most digits (frontend) are the most significant in forming an initial estimate and can be used on their own in the earlier stages to establish a rough estimate. Example : $€ 1.54+€ 6.35+€ 0.99+€ 2.51=$ $€ 1+€ 6+€ 2=€ 9$ $54 c+35$ c makes $€ 1$ approx, 99 c is nearly $€ 1$ and 51 c is nearly $50 c$

		Overall estimate is €11.50 ($¢ 9+$ cent estimate of $€ 2.50$)
G	geoboard	Used for learning about co-ordinates as well as making 2D shapes using elastic bands.
	geostrips	Used to construct 2D shapes.
H	highest common factor (hcf)	The highest common factor is the largest whole number than divides into two or more whole numbers (see common factor). Example: hcf of 16, 28 and $36=4$
	histogram	This is a diagram which represents data in rectangles. They have bases of the same width and data is represented by the area of the rectangle.
	hectare	A unit of area equal to 100 ares.
	hexagon	A six-sided polygon.
1	improper	A fraction in which the number above the line (numerator) is larger than the number

	fraction	below (denominator). Example: $\frac{5}{3}$
	index	Often referred to as the power. It is the number of times the number is multiplied by itself. The plural of index is indices. Examples: $2^{3}, 4^{8}, 17^{3}, 20^{2}$
	integers	Are whole numbers, plus and minus, including zero. The set of integers is represented by the letter Z. Examples: -12, -6, 8, 0, 257, - 4398 are integers.
	interest rate	Percentage of total earned on an investment or paid on a loan. Example: €100 invested in a bank for 1 year at an interest rate of 10% will accumulate to €110.
	intersection	Is the overlap of sets, where we see the elements that are common in two or more sets. The symbol used is \cap. Example: B $A \cap B=\{3,4\}$ A B $A \cap B$
	inverse	In many cases it means 'the opposite'. The inverse of addition is subtraction. The additive inverse of a number is the number you add to it to give zero. The additive inverse of -8 is 8 . The multiplicative inverse is the number you multiply by to give 1 . The multiplicative inverse of 7 is $\frac{1}{7}$.
	inverse proportion	When two numbers or sets of numbers are related and an increase in one corresponds to a decrease in the other. The product of the two numbers remains constant. Example: $A=\{40,24,15\} B=\{3,5,8\}$ as $40 \times 3=120,24 \times 5=120$ and $15 \times 8=120$.
J		
K	kilogram	Unit of mass (1000 grams)

		A shape has line symmetry if one half of the shape can be folded exactly onto the other half. line symmetry common It can be found by listing the multiples of these denominators in increasing order,

	multiple (Icm)	until a common number is reached. Example:To find what the Icm of 8,9 , and 12 is we could list their multiples: $\begin{array}{\|l} 8,16,24,32,40,48,56,64,72,80,88, \ldots \\ 12,24,36,48,60,72,84,96, \ldots \\ 9,18,24,36,45,54,63,72,81,90, \ldots \end{array}$
M	magnitude	Of anything is the measure of its size. Example: The magnitude of an earthquake is measured on the Richter scale from 0 to 10 .
	mean	This is the simple average of a given set of data. The mean of $8,7,12,0,3=8+7+12+0+3=30 \div 5=6$
	median	This is the middle value (or two values) of a set of data arranged in order. Example: 18, 3, 7, 8, 16, 2, 3 becomes 2, 3, 3, $\underline{7}, 8,16,18$ and 7 is the median. $-16,2,-7,2,23,-9,100,0$ becomes $-16,-9,-7,0,2,2,23,100 .(0+2) \div 2=1$
	millilitre	One thousandth of a litre, written as 1 ml .
	millimetre	One thousandth of a metre, written 1 mm .
	minus	This can be an operation or a property. Example: 12-8 = 4 is the operation of minus. -39 is described as negative thirty nine or minus thirty nine and this is a property.
	mixed numbers	Written as a whole number part and a fraction part. Example: $7+\frac{3}{8}=7 \frac{3}{8}$
	mode	This is the most commonly occurring value in a set of data.

	multiple	Of a number is made by multiplying it by another number. Example: The multiples of 7 are 7, 14, 21, 28, 35, 42.
N	natural numbers	The set of counting numbers starting at 1 . They are represented by the letter N . Example: $N=\{1,2,3,4,5,6,7,8,9,10 \ldots \ldots \ldots \ldots\}$
	notation board	Used for learning about place value.
	negative	This is a property of a number often referred to as the sign of it. A negative number is less than zero (see minus). Example: - 20
	net	This is the plan of a 3D object. Example: A cube with the net beside it.
	null set	This is a set that contains no elements. Example: $\mathrm{T}=\{$ The number of Irish people 5 m tall $\}$. $\mathrm{T}=\{ \}$ The symbols used to show the null set are shown below.
	number line	A straight line, on which points are used to represent numbers, emphasising particularly the order of numbers and their position in relation to each other.
	number sentence	An equation or statement of inequality. Examples: $4-x=11,4 x^{2}<12$ or $2+5=7$
	numerator	Number above the line in a fraction.

P	parallel	A line is parallel to another line if they are an equal distance apart and they never meet.
	perimeter	The sum of the length of the sides of a figure or shape.
	perpendicular	Two lines are perpendicular if they meet at right angles $\left(90^{\circ}\right)$.
	perpendicular bisector	A line that divides another line into two equal parts and is at 90° to it.
	pictogram	A way of representing discrete data, in which each member of the population is represented by an individual picture or icon arranged in rows or columns.

pie chart	A diagram in the shape of a circle or disc that is used to represent data. The 360° of the disc is divided in ratio into pieces of the pie.
place holder	The role of zero in the place-value system of numeration. Example: In the numeral 507 the 0 holds the tens place to indicate that there are no tens here.
place value	The position of a digit in a numeral determines its value. For example, ' 6 ' can represent six, sixty, six hundred, six tenths, and so on, depending on where it is written in the numeral. $\begin{array}{\|llll} 6 & 60 & 600 & 0.6 \end{array}$
plane figure	This is a 2D shape. Examples:
plus	This is the operation of addition or a property of a number. Examples: Addition $4+15=19$ or the number plus six +6 , which can be written as 6
polygon	A two-dimensional (2D) closed shape made up entirely of straight edges. It does not have to be regular. Examples:
polyhedron	A three-dimensional (3D) shape made up entirely of flat surfaces. It does not have to be regular Examples:

prime factor	A factor that is a prime number. There are different methods used to find prime factors. Example:
prime number	A number with exactly two factors, itself and 1. Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
prism	A shape made up of two identical polygons at opposite ends, joined up by parallel lines.
probability	This is the study of chance; its value varies between 0 and 1 . Example: The probability of a fair coin landing on heads $=0.5$
product	The result when you multiply two numbers. Example: $21 \times 8=168$
profit	This is the measure of gain in a financial transaction.
protractor	A geometric instrument for measuring angles.
positive	A positive number is one which is greater than zero. Example: $\sqrt{2}, 51 / 2,7.09,16$

	power	This is how often a number is multiplied by itself. It is also known as the index. Example: $3^{4}=3 \times 3 \times 3 \times 3=81$
Q	quadrilateral	A shape with four sides. Example: A rhombus is a four-sided shape with all of its sides equal in length.
	quotient	Is the result of a division. Example: $\frac{24}{8}=3$
R	radius	A line joining the centre of a circle to the edge of the circle. It is half the diameter in length.
	range	This is the difference between the smallest and the largest piece of data in a set. Example: The range of four people with heights of $160 \mathrm{~cm}, 155 \mathrm{~cm}, 180 \mathrm{~cm}, 178 \mathrm{~cm}$ is $180-155=25 \mathrm{~cm}$
	ratio	Is a comparison of two or more quantities. Example: When making concrete you mix 9 parts of gravel with 2 parts cement. The ratio of gravel to cement is 9:2
	rational numbers	This is a set of numbers which includes whole numbers, minus numbers, zero, fractions and decimals. They are represented by the letter Q . Examples: -97, 128, 0, $\frac{3}{7},-\frac{12}{19}, 0.529,-17.64$
	ray	Is a line that is finite in one direction but infinite in the other.

	right angle	An angle of 90°.
	rounding	The process of approximating an answer to an appropriate degree of accuracy; this can be done by rounding up or rounding down. Example: $€ 25.37$ rounded up to the nearest ten cent is $€ 25.40$ €24.14 rounded down to the nearest ten cent is €24.10;
S	sample space	Is the list of all possible outcomes of an experiment. Example: When tossing two coins the sample space is given in the diagram
	scalene triangle	A triangle with three sides of different length and, therefore, three different-sized angles.
	sequence	A set of numbers written in order according to a rule. Examples: 1, 2, 4, 8, 16, 32, 62. $1,2,3,5,8,13,21 .$
	set	A well defined collection of objects. Example: S = \{ dog, cat, elephant, giraffe\}
	set diagram	The simplest picture of a population sorted into subsets; each subset is represented by an enclosed region (such as a circle) with the names of the items of individuals rather than just one.
	side	The straight edges of a closed two-dimensional shape.

	subset	A subset is set which contains some or all elements of another set. The null set is a subset of every set. Example: Set $A=\{$ Kerry, Tyrone, Dublin, Galway\}, K is a subset of A and could be K= \{Kerry, Tyrone, Galway\}.
	subtraction	An operation in maths when the difference of two numbers is found (see difference). Example: $21-13=8 ; \quad-12-4=-16 ; \quad 63-(-12)=63+12=75$.
	subtrahend	The number to be subtracted from another number. Example: $10-4$ (4 is a subtrahend)
	substitute	To replace a variable with a number in order to calculate the value of an expression or to allow further algebraic manipulation. Example: $x^{2}+3 x+4$, substitute $x=5, x^{2}+3 x+4=5^{2}+3(5)+4=25+15+4=44$
	survey	A method of collecting data often by asking questions of a population or a sample of a population.
T	tally	A tally is made by recording a series of single strokes. Usually every fifth stroke is a bar to the other four for easy counting.
	tangram	A Chinese puzzle made up of seven simple geometric shapes, 2 large triangles, 1 medium triangle, 2 small triangles, 1 square and 1 parallelogram which are capable of being recombined in many different figures.

tessellation	Shapes tessellate if they fit together exactly, form a repeating pattern, and make an angle of 360 at the points of contact. Examples:
theorem	This is a statement in geometry that can be proved using previously accepted theorems or axioms. Example: The theorem of Pythagoras
transition board	A simple device to aid children's conceptual understanding of addition and subtraction.
triangle	A three-sided shape. Example: An equilateral triangle had 3 sides of equal length, an isosceles triangle has 2 equal sides and a scalene triangle has no sides of equal length.

triangular numbers	These are numbers that can be drawn as equilateral triangles. Example: The first of these numbers are $1,3,6,10,15,21 \ldots \ldots$.
trapezium	This is a four-sided figure with one set of parallel sides.
trend graph	Represents the general movement in the course of time of a statistically detectable change.

	trundle wheel	An instrument for measuring distance by counting the number of clicks as the wheel revolves. The circumference of the wheel is one metre.
U	union	This is an operation that joins together the elements of two or more sets. The symbol used is \cup.
	universal set	The universal set contains all elements of all sets under discussion. The symbol for universal set is U.
V	variable	A symbol that represents a value in an algebraic expression. Example: y + $7=12$. $Y=5$
	Value Added Tax (VAT)	A government tax added to most goods or services. It is usually charged as a percentage of the net cost.
	venn diagram	A Venn diagram is a picture of a number of sets together. venn diagram!
	vertex	Is a point or corner on a 3D shape or where two shapes meet.

	volume	The amount of space taken up by a 3D object.
W	weight	The gravitational pull exerted on an object.
	whole numbers	These can sometimes mean the Natural numbers (N) but are better described as the integers (Z). $-5,-3,0,17,213,488$
X	x-axis	In a graph this is the horizontal axis. Drawn on the Cartesian plane it is infinitely long in both directions.
Y	y-axis	In a graph this is the vertical axis. Drawn on the Cartesian plane it is infinitely long in both directions.
Z		

