Common Introductory Course for Junior Cycle Mathematics

The common course is intended to be covered by all students. The general learning outcomes reflect those listed in the draft syllabus strands documents. Depending on the progress being made by the class group, teachers may extend the learning sub-topics or explore the ones listed to a greater depth. The order in which topics are taught is left to the discretion of the teacher.

Strand /Topic Title	Learning outcomes
	students should be able to
Strand 1: 1.2 Sample design and data collection	 to pose a question and reflect on the question in the light of data collected'
	 plan an investigation involving statistics
	 select a sample and appreciate the importance of representativeness so as to avoid biased samples
	 design a plan to collect data on the basis of above knowledge
	 collect the data according to the plan
Strand 1: 1.3 Descriptive	 select appropriate graphical or numerical methods to
statistics	describe the sample (univariate data only)
	 use stem and leaf plots, line plots and bar charts to display data
Strand 1: 1.6 Concepts of	 decide whether an everyday event is likely or unlikely to
probability	happen
It is expected that experiments	 appreciate that probability is a quantity that gives a measure on a scale of 0 - 1 of how likely an event is to
(including simulations), both	occur
individually and in groups, will	 connect with set theory; discuss experiments, outcomes,
form the primary vehicle	_ use the fundamental principle of counting
through which the knowledge,	
understanding and skills in	
probability are developed.	
Strand 2: 2.1 Synthetic	 convince themselves through investigation that theorems
Geometry (see Appendix 1)	1-6 are true
The geometrical results should	 Complete the following constructions:
be first encountered through	 the bisector of a given angle, using only compass and straight edge
discovery and investigation.	 the perpendicular bisector of a segment, using only compass and straight edge
	 a line perpendicular to a given line l, passing through a given point on l
	 a line parallel to a given line l, through a given point
	 divide a line segment into 2, 3 equal segments, without measuring it
	 a line segment of given length on a given ray

Strand /Topic Title	Learning outcomes
	students should be able to
Strand 2: 2.2 Transformation	 use drawings to show central symmetry and axial
geometry	symmetry
Strand 2: 2.3 Co-ordinate	 coordinate the plane
geometry	 locate points on the plane using coordinates
	_
Strand 3: 3.5 Sets	 list elements of a set
Students learn the concept of a	 describe the rule that defines a set
set as being a collection of well-	 consolidate the idea that equality is a relationship in which two equal acts have the same elements
defined objects or <i>elements</i> .	 use the cardinal number terminology when referring to set
They are introduced to the	membership
concept of the universal set,	 perform the operations of intersection, union (for two sets)
null set, sub-set; the union and	 investigate the commutative property for intersection and union
intersection operators and to	 – illustrate sets using Venn diagrams
Venn diagrams: simple closed	
bounded curves that contain the	
elements of a set. They	
investigate the properties of	
arithmetic as related to sets and	
solve problems involving sets.	
Strand 3: 3.1 Number systems	 revisit models such as decomposition, skip counting,
	arranging items in arrays and accumulating groups of equal
Students explore the operations	size to make sense of the operations of addition,
of addition, subtraction,	subtraction, multiplication, and division in ${f N}$ where the
the relationships between these	answer is in N
	 investigate the commutative, associative and distributive
to whole numbers and integers	properties of number operations and the relationships
They explore some of the laws	between operations, including inverse operation
averning these operations and	 perform the operations in their order, including brackets
use mathematical models to	 investigate models such as the number line to illustrate the
reinforce the algorithms they	operations of addition, subtraction, multiplication and
commonly use. Later, they	division in Z
revisit these operations in the	 generalise observations of arithmetic operations
context of rational numbers and	 investigate models to help think about the operations of
refine and revise their ideas.	addition, subtraction, multiplication and division of rational
	numbers

Strand /Topic Title	Learning outcomes
	students should be able to
Students devise strategies for	 consolidate the idea that equality is a relationship in which two mathematical expressions have the same value
computation that can be applied	 analyse solution strategies to problems
to any number. Implicit in such	 begin to look at the idea of mathematical proof
computational methods are	 calculate percentages
generalisations about numerical	 use the equivalence of fractions, decimals and
relationships with the	 – consolidate their understanding of factors, multiples, prime
operations being used.	numbers in N
Students will articulate the	 consolidate their understanding of the relationship between ratio and preparties
generalisation that underlies	ratio and proportion
their strategy, firstly in common	of magnitude and by working the problem backwards
language and then in symbolic	 make and justify estimates and approximations of
language.	calculations
Strand 4:	 use tables to represent a repeating-pattern situation
4.1 Generating arithmetic	 generalise and explain patterns and relationships in words
expressions from repeating	 write arithmetic expressions for particular terms in a
patterns	sequence
Students examine patterns and	 use simple graphs as a tool for analysing relations
the rules that govern them and	 develop and use their own mathematical strategies and ideas and consider those of others
so construct an understanding	 present and interpret solutions, explaining and justifying
of a relationship as that which	methods, inferences and reasoning
involves a set of inputs, a set of	
outputs and a correspondence	
from each input to each output.	
4.0 Depresenting situations with	
4.2 Representing situations with	—
Studente examine relatione	
derived from some kind of	
situations imaginary contexts	
or arrangements of tiles or	
blocks They look at various	
natterns and make predictions	
about what comes next	